
Thermodynamics of a two-dimensional Yukawa fluid

Hiroo Totsuji,* M. Sanusi Liman, Chieko Totsuji, and Kenji Tsuruta
Department of Electrical and Electronic Engineering, Faculty of Engineering, Okayama University, Tsushimanaka 3-1-1,

Okayama 700-8530, Japan
and Graduate School of Natural Science and Technology, Okayama University, Tsushimanaka 3-1-1,Okayama 700-8530, Japan

(Received 30 December 2003; revised manuscript received 22 March 2004; published 29 July 2004)

Thermodynamic quantities of a two-dimensional Yukawa system, a model for various systems including
single-layered dust particles observed in dusty plasmas, are obtained and expressed by simple interpolation
formulas. In the domain of weak coupling, the analytical method based on the cluster expansion is applied and,
in the domain of intermediate and strong coupling, numerical simulations are performed. Due to reduced
dimensionality, the treatment based on the mean field fails at the short range and exact behavior of the binary
correlation is to be taken into account even in the case of weak coupling.
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I. INTRODUCTION

The two-dimensional Yukawa system has been investi-
gated as a typical example and model system in two dimen-
sions which covers systems with both the long- and short-
ranged interactions by adjusting a single parameter. On the
other hand, the formation of horizontal layers composed of
dust particles has been observed in recent dusty plasma ex-
periments and it has been shown that the number of layers is
determined by the competition between mutual repulsion and
strength of vertical confinement[1]. When the latter is strong
enough, we have the single-layered state as the ground state
of the layered system. Those dust particles can be regarded
as interacting via the Yukawa potential and we have a two-
dimensional Yukawa system in reality. They have provided
us with a unique example of a two-dimensional finite system
whose microscopic characteristics can be easily observed by
charge coupled device cameras and even by the naked eye.
Both static and dynamic properties have been investigated
including distribution functions, dynamic fluctuation spectra,
and dispersion relations of various modes of oscillations[2].
The results are of much interest by themselves and also help
us to estimate physical parameters of ambient plasmas in
experiments[3–5].

In this paper, we give the thermodynamic quantities of a
two-dimensional Yukawa system. Thermodynamic quantities
are of fundamental importance and play an essential role, for
example, to determine the equilibrium of a system in exter-
nal potential. We employ both analytical methods based on
the cluster expansion and numerical simulations. In prin-
ciple, we are able to obtain these quantities by numerical
simulations. In the domain of weak coupling, however, ther-
mal fluctuations usually make it difficult to obtain accurate
values in simulations and analyses based on the expansion
with respect to the coupling parameter becomes useful.

Yukawa systems in dusty plasmas are often in the state of
strong coupling due to large charge on dust particles and
both two- and three-dimensional lattices have been observed.

As well as two-dimensional dust crystals in the domain of
strong coupling, the two-dimensional Yukawa system in the
weak coupling domain is also interesting. It has been known
that [6,7], in the domain of weak coupling, thermodynamic
quantities of a two-dimensional system of charges have dif-
ferent behavior from that of a three-dimensional one due to
reduced dimensionality. In three dimensions, the mean field
theory (the random phase approximation) works in the do-
main of weak coupling, correctly describing the major many-
body effect, the screening of the long-range interaction. In
two dimensions, however, the consideration of the short-
range(two-body) correlation is needed with the same weight
as the long-range screening even in the domain of weak cou-
pling. The leading terms in thermodynamic quantities of the
two-dimensional Coulomb system have been obtained by
one of the authors by properly taking the short-range corre-
lation into account[6,7]. We here extend those results to a
two-dimensional Yukawa system.

We consider the system of particles with the surface
densityn and the temperatureT interacting via the Yukawa
potential

vsrd =
e2

r
exps− r/ld, s1.1d

wheree is the charge on a particle andr is the mutual dis-
tance. We assume the existence of the inert uniform back-
ground charge of density −ne which neutralizes the charge
density of particles. This system is characterized by the pa-
rametersG andj given, respectively, by

G =
e2

kBTa
s1.2d

and

j =
a

l
, s1.3d

wherea is the mean distance defined by

a =
1

spnd1/2. s1.4d
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II. WEAK COUPLING

We here assume that the coupling is weak or

G ! 1. s2.1d

As is shown shortly below, the many body screening effect is
characterized by the two-dimensional Debye wave number
KD defined by

KD =
2pne2

kBT
. s2.2d

Another definition of the coupling parameter which we de-
note by« is the ratio between the Landau lengthe2/kBT and
the Debye length 1/KD and is related toG as below and is
also small:

« =
e2/kBT

1/KD
= 2G2 ! 1. s2.3d

In the Coulombic casesl→`d, the pressureP is calcu-
lated as[6,7]

P

nkBT
− 1 =

«

4
flns2«d − 1 + 2gg for « ! 1 sl → `d,

s2.4d

whereg=0.5772. . . is the Euler’s constant. This is to be com-
pared with the three-dimensional(3D) Debye-Hückel result
for the pressurep which is regular as an expansion with
respect to the coupling parameter«,

p

nkBT
− 1 = −

«

6
for « ! 1 s3D,l → `d. s2.5d

Here the three-dimensional Debye wave number and the cou-
pling parameter are defined, respectively bykD

2

=4pne2/ skBTd and«=se2/kBTd / s1/kDd. The nonanalytic na-
ture of the expansion appears in the next order[8].

The Debye wave numberKD characterizes the screening
by many body effects whereasl denotes the inherent decay
of interaction. When 1/KD!l, the screening is controlled by
1/KD and the result(2.4) is still valid. We thus assume, on
the contrary, that

e2/kBT ! l ! 1/KD. s2.6d

We note that this condition is rewritten as

KDa = 2G ! j =
a

l
!

a

se2/kBTd
=

1

G
s2.7d

andj can be of the order of unity whenG!1.

A. Random phase approximation

We first note that the Fourier transform of the Yukawa
potential in two dimensions is given by

vsrd =
1

s2pd2 E dkvskdexpsik · r d, s2.8d

vskd =
2pe2

sk2 + 1/l2d1/2. s2.9d

Following the standard procedure[7,9], we obtain the con-
ductivity ssk ,vd and the dielectric response function«sk ,vd
in the random phase approximation as

ssk,vd = − i
ne2v

kBTk2WHv

k
S m

kBT
D1/2J , s2.10d

«sk,vd = 1 +
KD

sk2 + 1/l2d1/2WHv

k
S m

kBT
D1/2J . s2.11d

Herem is the mass,KD is the Debye wave number given by
Eq. (2.2), andWszd is defined by

Wszd =
1

s2pd1/2E
−`

`

dx
x exps− x2/2d

x − z− i0
. s2.12d

From the fluctuation-dissipation theorem[7,9], the static
form factorSskd and the pair correlation functionhsrd in the
random phase approximation are given, respectively, by

Sskd =
sk2 + 1/l2d1/2

sk2 + 1/l2d1/2 + KD
s2.13d

and

hsrd = −
usrd
kBT

, s2.14d

usrd =
1

s2pd2 E dkuskdexpsik · r d, s2.15d

uskd =
2pe2

sk2 + 1/l2d1/2 + KD
. s2.16d

The interaction(correlation or cohesive) energy per unit vol-
ume given by

n2

2
E drvsrdhsrd s2.17d

is logarithmically divergent forr →0 indicating that the
short-range correlation is not taken into account properly in
this approximation.

B. Thermodynamic quantities by cluster expansion

To obtain correct thermodynamic quantities, it is neces-
sary to start from the cluster expansion. The pressureP is
given by Mayer’s giant cluster expansion as[8,10]

P

nkBT
− 1 = −n

] W

] n
, s2.18d

whereW is the sum of contributions from the ring diagrams
W0 and the prototype graphsWp. In the prototype graphs, the
interaction potential is replaced by the screened oneusrd
defined by Eq.(2.15) as shown in Fig. 1. In the Coulombic
casesl→`d, the interaction is screened into the form[6,7]
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usrd =
e2

r
E

0

`

dx
x

x + KDr
J0sxd, s2.19d

whereJ0sxd is the Bessel function.
The contribution of the ring diagramsW0 is calculated as

W0 =
1

2n

1

s2pd2 E dkf− lnh1 + nbvskdj + nbvskdg,

s2.20d

whereb=1/kBT andnbvskd=KD / sk2+1/l2d1/2. The leading
contribution from the prototype graphs is given by the one
with two junctions

Wp
s2d =

n

2
E drFexph− busrdj − 1 +busrd −

1

2
hbusrdj2G .

s2.21d

As is pointed out by one of the authors[6,7], both of the
contributions fromW0 and Wp

2 are divergent in the short
range sr →0 or k→`d and cannot be evaluated indepen-
dently. We introduce

W8 =
nb2

4
E drusrdvsrd =

nb2

4

1

s2pd2 E dkuskdvskd

s2.22d

and evaluateW0−W8 and Wp
s2d+W8 separately as in Refs.

[6,7].
The value ofW0−W8 is evaluated as

W0 − W8 =
«

8
F 2

sKDld2lns1 + KDld −
2

KDl

+
1

1 + sKDld2

KDl

1 + KDl
G s2.23d

and, whenKDl!1, we have

W0 − W8 ,
5

24
«KDl ! «. s2.24d

In evaluatingWp
s2d+W8, we divide the integral overr into

0, r , r0 sI1d and r0, r ,` sI2d, taking r0 such thatbe2

! r0!l!1/KD. Using this condition, we have

I1 ,
«

4
F− lnSbe2

r0
D − g +

3

2
G , s2.25d

I2 ,
«

4
F− lnS2

r0

l
D − gG , s2.26d

and therefore

Wp
s2d + W8 ,

«

4
F− lnS2

be2

l
D − 2g +

3

2
G , s2.27d

whenbe2!l!1/KD (see the Appendix).
Finally we have

W0 + Wp
s2d ,

«

4
F− lnS2

be2

l
D − 2g +

3

2
G s2.28d

and the pressure is calculated as

P

nkBT
− 1 , −

«

4
F− lnS2

be2

l
D − 2g +

3

2
G . s2.29d

The argument of the logarithm expresses that the integral
over r, which is logarithmically divergent for bothr →0 and
r →`, is cutoff atbe2 andl, respectively.

In the case of Coulomb interactionsl→`d, we have[6,7]

W0 − W8 =
1

8
« sl → `d, s2.30d

W0 + Wp
s2d ,

«

4
F− lns2«d − 2g +

3

2
G

=
«

4
F− lnS2

be2

1/KD
D − 2g +

3

2
G sl → `d,

s2.31d

and

P

nkBT
− 1 =

«

4
flns2«d − 1 + 2gg =

«

4
FlnS2

be2

1/KD
D − 1 + 2gG

sl → `d. s2.32d

When the result for the Yukawa system(2.28) is compared
with the Coulombic case(2.31), we see that the long-range
cutoff at 1/KD is replaced byl. This result may be naturally
expected from the condition(2.6). In order to determine the
constant such as −ln 2−2g+3/2, however, we need the
analyses in Refs.[6,7] and the present paper. Similar analy-
ses on the pair correlation function have been done based on
the cluster expansion for the Coulombic case[11].

The Helmholtz free energyF is separated into the ideal
gas partFideal and the interaction partDF as

F = Fideal+ DF, s2.33d

where

DF = NkBTfsG,jd s2.34d

and f is a dimensionless function of dimensionless quantities
G andj. Since

P/nkBT − 1 = −Vs] /] VdT,N,l fsG,jd = ns] /] ndT,l fsG,jd,

s2.35d

we have

FIG. 1. Screened interactionusrd. The lines connecting the dots
represent the bare interactionvsrd and integrals are taken over po-
sitions of dots.
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fsG,jd = −
«

4
F− lnS2

be2

l
D − 2g +

3

2
G

= −
G2

2
F− lns2Gjd − 2g +

3

2
G . s2.36d

The nonideal part of the entropyDS and the internal(corre-
lation or cohesive) energyU given, respectively, by

DS= − S ] DF

] T
D

N,V
s2.37d

and

U = DF + TDS s2.38d

are calculated as

DS= NkB
«

4
FlnS2

be2

l
D + 2g −

1

2
G

= NkB
G2

2
Flns2Gjd + 2g −

1

2
G , s2.39d

and

TABLE I. Cohesive energy of 2D Yukawa particles obtained by molecular dynamics simulation with the
results of the Coulombic system[13].

G U /GNkBT G U /GNkBT G U /GNkBT G U /GNkBT

j=0.0

0.158 −0.430 0.224 −0.528 0.500 −0.640 0.707 −0.735

1.00 −0.780 1.23 −0.817 1.41 −0.842 1.58 −0.848

1.73 −0.872 1.87 −0.882 2.00 −0.890 2.12 −0.896

2.24 −0.908 2.35 −0.904 2.74 −0.924 5.00 −0.986

7.07 −1.01 15.8 −1.05 22.4 −1.07 50.0 −1.08

j=0.5

0.277 −0.383 0.397 −0.424 0.500 −0.466 0.501 −0.456

0.526 −0.480 0.659 −0.504 1.99 −0.671 3.25 −0.722

3.39 −0.732 6.62 −0.783 10.1 −0.809 13.0 −0.819

13.5 −0.822 19.5 −0.836 33.5 −0.850 49.8 −0.859

52.0 −0.860 69.7 −0.864 96.5 −0.868 102. −0.869

j=1.0

0.133 −0.225 0.198 −0.261 0.202 −0.268 0.332 −0.320

0.346 −0.328 0.393 −0.339 0.528 −0.372 0.661 −0.393

0.667 −0.398 1.32 −0.487 1.60 −0.495 1.78 −0.504

2.71 −0.544 3.05 −0.552 3.06 −0.553 3.20 −0.560

4.14 −0.582 4.44 −0.590 4.96 −0.599 5.65 −0.605

6.03 −0.610 6.56 −0.616 7.22 −0.619 9.91 −0.637

10.1 −0.635 17.3 −0.659 20.3 −0.662 24.4 −0.666

26.6 −0.670 29.4 −0.672 29.9 −0.672 36.3 −0.676

36.6 −0.676 39.9 −0.678 51.6 −0.682 54.8 −0.683

68.0 −0.687 71.8 −0.687 78.0 −0.689 97.8 −0.690

j=1.5

3.19 −0.454 5.42 −0.481 9.62 −0.508 16.2 −0.524

24.9 −0.534 28.4 −0.537 37.1 −0.543 52.8 −0.548

j=2.0

0.264 −0.201 0.267 −0.203 0.331 −0.221 0.337 −0.229

0.661 −0.272 0.662 −0.272 0.663 −0.274 1.32 −0.321

2.68 −0.363 3.21 −0.372 3.27 −0.373 3.38 −0.377

6.68 −0.402 6.78 −0.401 9.80 −0.415 10.1 −0.418

13.0 −0.424 19.2 −0.432 20.0 −0.433 25.1 −0.437

27.4 −0.439 31.2 −0.441 32.9 −0.442 35.7 −0.442

38.7 −0.443 56.2 −0.448 57.3 −0.449 65.9 −0.450

66.2 −0.450 73.3 −0.451 76.3 −0.451 82.6 −0.453
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U = NkBT
«

2
FlnS2

be2

l
D + 2g − 1G

= NkBT G2flns2Gjd + 2g − 1g. s2.40d

We note that these results are derived with the condition
(2.7) or 2G!j!1/G.

In the case of Coulomb interactionsl→`d, they are
given by

fsG,j = 0d = −
«

4
f− lns2«d − 2g + 2g = − G2f− lns2Gd − g + 1g,

s2.41d

DSsl → `d = NkB
«

4
flns2«d + 2gg = NkBG2flns2Gd + gg,

s2.42d

and

Usl → `d = DF + TDS= NkBT
«

2
flns2«d + 2g − 1g

= NkBTG2f2 lns2Gd + 2g − 1g.

s2.43d

III. INTERMEDIATE AND STRONG COUPLING

In the case whereG is not small, the expansion with re-
spect to coupling cannot be applied and we resort to the
numerical simulation. We apply the molecular dynamics to
the system of 256 Yukawa particles. The periodic boundary
condition with the deformable parallelogram unit cell is
adopted. In order to analyze the strongly coupled domain
near possible lattice formation, it may be necessary to take
the deformation of the periodicity into account[1,12]. In this
paper, however, we restrict the coupling parameter within the
domain of fluid where such deformation is expected to have
no serious effect.

By numerical simulations for combinations ofG andj, we
have obtained the value ofU covering the domain of inter-
mediate and strong coupling with 0.5øjø2. The results are
summarized in Table I and shown in Figs. 2(a)–2(c) in the
form of U /GNkBT. As in the case of the Coulombic system
[11], we observe that, whenG increases,U approaches the
value (Madelung energy) for triangular lattice[12] as

U8sG,jd =
U

NkBT
→ csjdG when G → `, s3.1d

where the normalized valueU8=U /NkBT is a function of
dimensionless parameters andcsjd is a coefficient dependent
on j [12] and is approximately expressed as[4]

p1/2csjd = − 1.9605 + 0.8930j − 0.1959j2 + 0.01715j3.

s3.2d

IV. INTERPOLATION FORMULAS

We present here simple interpolation formulas for thermo-
dynamic quantities of a two-dimensional Yukawa system. We

first consider the values ofU; since the relations
(2.33)–(2.35), (2.37), and (2.38) hold irrespective of the
strength of coupling, other thermodynamic quantities are de-
rived from the value ofU.

As for the expansion with respect to the coupling param-
eter, we apply the result(2.40) in the weak coupling domain
Gø0.05!1:

U8sG,jd = G2flns2Gjd + 2g − 1g, G ø 0.05. s4.1d

We note thatU reduces to the Madelung energy for the tri-
angular lattice[12] as Eq.(3.1) when the coupling is strong
enough, and analyze the behavior of the normalized differ-
ence from those values,

FIG. 2. Interaction(correlation or cohesive) energy divided byG
vs G. In (a), marks are the results of numerical simulations, the solid
lines are interpolated values and the broken lines are analytical
results. In(b) and (c), marks are the results of numerical simula-
tions and the lines are interpolated values.
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U8sG → `,jd − U8sG,jd
U8sG → `,jd

, s4.2d

which decreases from unity to 0 with the increase ofG from
0 to `. As a result, we find that the decrease can be expressed
by a simple functional form of,exps−xGyd with a coeffi-
cient x=2.55 and the powery=0.18 which are independent
of j for 0.5øjø2. Based on this observation, we finally
have for 0.05øGø100 and 0.5øjø2

U8sG,jd = csjdG − fcsjdG − U8s0.05,jdg

3expf− 2.55sG0.18− 0.050.18dg. s4.3d

We plot the values given by this interpolation in Figs.
2(a)–2(c). We confirm that this interpolation works with rela-
tive error less than 1% for 10øGø100, less than 3% for
1øGø10, and less than 10% for 0.05øGø1.

For the Coulombic case, we apply the weak coupling re-
sult (2.43) to the weak coupling domainGø0.02

U8sG,j = 0d = G2f2 lns2Gd + 2g − 1g. s4.4d

In the case of intermediate and strong coupling, we use the
values previously given by one of the authors[13]. After
similar analysis, we have

U8sG,j = 0d = csj = 0dG − fcsj = 0dG − U8s0.02,j = 0dg

3expf− 2.55sG0.18− 0.050.18dg s4.5d

for 0.02øGø100. The result is also plotted in Figs.
2(a)–2(c). Relative error is less than 1% for 2øGø100, less
than 3% for 1øGø2, and less than 15% for 0.02øGø1.

Since we have assumed Eq.(2.7) or 2G!j in deriving
Eq. (4.1) for the domain of weak coupling, we cannot de-
creasej in Eq. (4.1) to values comparable withG. In this
sense, the analytical result forG,j!1 is left unresolved. In
connecting the weak coupling expressions to that in the in-
termediate and strong coupling domain, we have chosenG
=0.05 for 0.5øjø2 and G=0.02 for j=0 as the limit of
applicability of analytical results observing the overall be-
havior of the error. The analysis in the range 0,j,0.5 is
similarly left unresolved in this paper.

Based on the relations(2.33)–(2.35), (2.37), and (2.38),
we obtain the nonideal part of the Hemholtz free energy
DF=NkBTfsG ,jd for 0.05øGø100 and 0.5øjø2 as

fsG,jd = SE
0

G1

+E
G1

G DdG

G
U8sG,jd =

G1
2

2
Flns2G1jd + 2g −

3

2
G

+ csjdsG − G1d − csjd
expsxG1

yd
yx1/y FgS1

y
,xGyD

− gS1

y
,xG1

yDG +
expsxG1

yd
y

U8sG1,jdfEis− xGyd

− Eis− xG1
ydg, s4.6d

whereG1=0.05,x=2.55,y=0.18, andgsz,pd and Eis−zd are
the incomplete gamma function and the exponential integral
function, respectively:

gsz,pd =E
0

p

dt exps− tdtz−1, s4.7d

Eis− zd = −E
z

`

dt
exps− td

t
. s4.8d

The pressure is given by

P

nkBT
− 1 =nS ] fsG,jd

] n
D

T,l

=
1

2
U8sG,jd −

G1
2

4
−

1

2
j
dcsjd

dj
sG − G1d

+
1

2
j
dcsjd

dj

expsxG1
yd

yx1/y FgS1

y
,xG1

yD − gS1

y
,xGyDG

−
1

2
G1

2expsxG1
yd

y
fEis− xGyd − Eis− xG1

ydg. s4.9d

The entropy is given by

DS

NkB
= U8sG,jd − fsG,jd. s4.10d

It should be noted that, since the entropy is given as the
difference betweenU8sG ,jd and fsG ,jd, the relative error is
largely enhanced even when bothU8sG ,jd and fsG ,jd have
small relative errors. The values offsG ,jd=DF /NkBT,
P/nkBT−1 andDS/NkB are shown in Figs. 3–5.

In the Coulombic case with 0.02øGø100, we have

fsG,j = 0d = G1
2flns2G1d + g − 1g + csj = 0dsG − G1d

− csj = 0d
expsxG1

yd
yx1/y fgs1/y,xGyd − gs1/y,xG1

ydg

+
expsxG1

yd
y

U8sG1,j = 0dfEis− xGyd − Eis− xG1
ydg,

s4.11d

P

nkBT
− 1 =

1

2
U8sG,j = 0d, s4.12d

and

FIG. 3. Normalized values of the nonideal part of Helmholz free
energyf =D F /NkBT vs G for j=0, 0.5, 1, 1.5, and 2.
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DS

NkB
= U8sG,j = 0d − fsG,j = 0d, s4.13d

where G1=0.02, x=2.55, andy=0.18. The results are also
plotted in Figs. 3–5.

V. CONCLUSION

We have obtained thermodynamic quantities of a two-
dimensional Yukawa system. In the domain of weak cou-
pling, the analytical results are derived based on the giant
cluster expansion and the effect of reduced dimensionality is
explicitly shown. In the domain of intermediate and strong
coupling, molecular dynamics have been applied and the re-
sults are expressed as the simple interpolation formulas.
These results will be useful in investigating two-dimensional
systems including the single-layered dust particles in dusty
plasmas.

APPENDIX

In evaluating I1, we may put usrd,vsrd and expf−b
3vsrdg,expf−sbe2/ rds1−r /l+r2/2l2dg. We thus have

pnE
0

r0

drrFexpH−
be2

r
exps− r/ldJ − 1 +

be2

r
exps− r/ldG

,
«

4
F− lnSbe2

r0
D − g +

3

2
G . sA1d

The integral

n

2
E

0

r0

drb2usv − ud ,
n

2
E

0

r0

drb2vsv − ud sA2d

is estimated to be of higher order.
In integral I2, we may evaluate as

pnE
r0

`

drrfexps− bud − 1 +bu − b2u2/2g

, − pnE
r0

`

drrb3u3/3 ! , − pnE
r0

`

drrb3v3/3 ! .

sA3d

Here we note that, sincel!1/KD, the integrand becomes
small enough before the many body screening becomes ef-
fective and we estimate its value to be of the order of
«sbe2/ldulnsbe2/ldu!«. The remaining integral is similarly
estimated as

pn

2
E

r0

`

drrb2uv ,
pn

2
E

r0

`

drrb2v2 ,
«

4
F− lnS2

r0

l
D − gG .

sA4d
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FIG. 4. Normalized values of the nonideal part of pressure
P/nkBT−1 vs G for j=0, 0.5, 1, 1.5, and 2. FIG. 5. Normalized values of the nonideal part of entropy

D S/NkB vs G for j=0, 0.5, 1, 1.5, and 2.
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